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The need for flexibility in power systems 

Renewable energy is intermittent 
and unpredictable. 

24 hour solar power production 

Intermittency demands new sources 
of flexibility: 

24 hour wind power production
 
Energy storage
 

Loads (demand response) 
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Energy Storage 

Capabilities 

Load-shifting/arbitrage, frequency & voltage regulation, curtailment 

Natural inventory control formulation.a 

aJ.A. Taylor, D.S. Callaway, and K. Poolla. “Competitive energy storage in 
the presence of renewables”. In: Power Systems, IEEE Transactions on 28.2 
(May 2013), pp. 985–996. doi: 10.1109/TPWRS.2012.2210573. 

Pumped hydro
 

Batteries
 

Flywheels, compressed air,
 
supercapacitors... 

A123 battery storage 
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Demand response, “supply following” 

Example 

5 MW drop in solar output is balanced by 3,000 residential AC’s turning 
off (for financial compensation). 

Uses: 

Curtailment 

Load shifting 

Frequency regulation 

Sources: 

Residential appliances, building
 
HVAC, industrial
 

Samsung smart air conditioner 
Electric vehicles 
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Functionalities of storage and demand response 

Load shifting / Peak shaving 

Inject during high demand, 
extract power during low 
demand 

Buy low, sell high 

Time scale: hours 

L
o
a
d

Time
 

 

Nominal load

Shifted load
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This talk 

How can we better fit storage and demand response in power systems? 

Part 1: Representing storage in markets. 

Part 2: Representing demand response similar to (but not the same 
as) storage. 
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Wholesale electricity markets 

Basics 

Generation (assets) sells to system operator. 

Loads buy from system operator. 

Prices are dual variables of economic dispatch / optimal power flow. 

Time scale: Hourly, 5 min 
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Motivation: conceptual 

The analogy between transmission and storage 

Transmission moves power spatially, storage forward in time. 

Large upfront cost, inexpensive operation 

Hard power capacity limits (storage also has energy) 

Transmission economics 

Lines do not buy power at one end and sell at the other (spatial 
arbitrage). 

Commonly financed with Financial Transmission Rights. 

Should storage buy and sell power at nodal prices? 

If so, storage profits through intertemporal arbitrage. Case closed. 

If not, we need Financial Storage Rights. Call this Passive Storage. 
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Approach
 

1 Financial Transmission Rights are parametrized by dual multipliers 
from optimal power flow. 

2 Storage is modeled in multiperiod optimal power flow (MOPF). 

3 Dual multipliers from MOPF −→ Financial Storage Rights. 

Start with (1) for intuition. 
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Optimal power flow and nodal prices 

 
Minimize generation cost: Fi (Pi ) subject to 

i  
Nodal power balance: Pi = Pij (1) 

j 

Transmission capacity: Pij = Bij (θi − θj ) ≤ Lij (2) 

Lagrange duality: 

λi is the multiplier of (1). 

µij is the multiplier of (2). 

Nodal AKA locational marginal pricing 

The load/generator at node i buys/sells Pi at price λi from the System 
Operator (SO). 

Rigorous foundation in microeconomics 

“Successful” history in communication, transportation, capitalism 
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Transmission congestion in a two-node network
 

Node one sells P1 to SO at λ1, node two buys P2 at λ2 from SO. 

Uncongested case: 

P1, λ1 

P12 < L12, µ12 = 0 
P2, λ2 

λ2 − λ1 = µ12 = 0 

SO budget: λ2P2 − λ1P1 = 0 
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Transmission congestion in a two-node network
 

Node one sells P1 to SO at λ1, node two buys P2 at λ2 from SO. 

Congested case: 

P1, λ1 

P12 = L12, µ12 ≥ 0 
P2, λ2 

λ2 − λ1 = µ12 ≥ 0 

SO budget: λ2P2 − λ1P1 ≥ 0 
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Transmission congestion 

Consequences of transmission congestion: 

System operator makes money (undesirable). 

In practice, λ2 >> λ1 (price spiking breaks load’s bank account). 

Generators shortchanged. 

Arithmetic with KKT yields:1 

λi Pi + µij Lij = 0 � i � � � 
ij � � 

SO budget ??? 

What does the latter term tell us? 

1Felix Wu et al. “Folk theorems on transmission access: Proofs and 
counterexamples”. In: Journal of Regulatory Economics 10 (1 1996), 
pp. 5–23. 
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Transmission rights 

 
The SO has a budget surplus of ij µij Lij . 

Definition: The holder of a Flowgate Transmission Right is entitled to 
collect µij L

k , 0 ≤ Lk ≤ Lij from SO.2 
ij ij  

If k L
k
ij = Lij for all ij , flowgates balance SO budget. 

Generators capture more profit, loads hedge against price spikes. 

2Hung-Po Chao and Stephen Peck. “A market mechanism for electric power 
transmission”. English. In: Journal of Regulatory Economics 10.1 (1996), 
pp. 25–59. doi: 10.1007/BF00133357. 
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Revenue paths 

Transmission 
owner 

Nodal price arbitrage (real time) Electricity 
market 

Hypothetical revenue path: Spatial arbitrage 

Auction Congestion 

Transmission 
owner 

Right holder Electricity 
market 

(ex ante) (real time) 

Actual revenue path: Transmission Rights 

14 / 35 



Which makes more sense for storage? 

Temporal price arbitrage (real time) Storage 
owner 

Electricity 
market 

Option 1: Temporal arbitrage 

Auction Congestion 
(ex ante) Storage 

owner 

(real time) 
Right holder Electricity 

market 

Option 2: Storage rights (passive storage) 

Some justification for rights 

Storage is like transmission, same justifications apply. 

Already under consideration by PJM.a 

aM. Abdurrahman et al. Energy Storage as a Transmission Asset. 
Tech. rep. PJM Interconnection and Xtreme Power, 2012. 

15 / 35 



�� � �� � �� �

Starting point: a simple model of storage 

Dynamics: 
S t+1 = S t + Ut 

SOC at t+1 SOC at t Power at t 

Energy capacity: 
0 ≤ S t ≤ C t 

Note: 

Time varying capacities for load aggregations. 

Power capacity, leakage, and injection/extraction losses omitted for 
simplicity. 

Nonlinear features (transmission losses, reactive power from storage 
inverters) accommodable with convex power flow relaxations 
(Taylor 2015a). 
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Multiperiod optimal power flow with storage 

  
F t 

i,t   i
t
iMinimize generation cost: P subject to 

t
i = Ut

i + θti − θtjNodal power balance: P Bij (1) 
j  

t
i − θtjTransmission capacity: Bij ≤ Lijθ (2) 
t
i

t
iEnergy capacity: 0 ≤ S

S t+1 
i 

≤ C (3) 
t
i

t
iStorage dynamics: = S + U

Lagrange duality, again: 

λt
i is the multiplier of (1). 

t is the multiplier of (2). µij 

χt
i is the upper multiplier of (3). 
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Storage congestion 

Consequences of storage congestion are similar to transmission: 

System operator makes money (undesirable). 

High prices (spikes) for loads. 

Generators lose sales. 

Arithmetic with KKT of MOPF yields: 

tλt
i P

t + µij Lij + χt
i C t = 0 i i 

t i ij i 

SO budget Transmission right payments ??? 

What does the latter term tell us this time? 
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Storage rights 

t χt C tThe SO has a budget surplus of Lij + i .t ij µij i i 

The first term corresponds to Flowgate Transmission Rights. 

Definition: The holder of an Energy Capacity Right is entitled to collect 
χt C t,k ≤ C t, 0 ≤ C t,k from SO in each time period. i i i i 

Purchasable by loads and generators through right auctions. 

C t,kIf = C t for all i and t, balances SO budget. k i i 

Generators capture more profit, loads hedge against price spikes. 

Other storage rights: 

Power Capacity Right from multiplier of the power constraint 

Financial Storage Right = Energy Capacity Right + Power Capacity 
Right 
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Further thoughts
 

Financial storage rights are essential for passive storage. Does passive 
storage make sense? 

Invest in storage without dealing with electricity markets. 

Lends itself better to direct operation by SO. 

Insurance against price volatility for loads and generators. 

Add flexibility to regulatory environment. 
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Part two: demand response 

A handful of ways to fit storage in markets. 

Storage and DR provide similar services. 

How can we represent DR like (but not identically as) storage? 

Joint work with Suhail Barot 
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Why demand response? 

Energate home energy management 

Advantages of load-based resources 

Cost: Comm. panel, smart-appliance... ‘information’ not ‘power’ 
sensor & actuator hardware 

Response precision/speed: Buildings: 3-8 min. (J. Mathieu, Gadgil, 
et al. 2010), Air Cond.: ∼ 1 min (Eto et al. 2009), instantaneous in 
theory ... A generator can take hours! 

22 / 35 



Why demand response? 

Energate home energy management 

DR is already here 

72GW in US (FERC, 
2012) 

FERC order #745: pay 
DR like generators 

Now hundreds of 
companies 

Advantages of load-based resources 

Cost: Comm. panel, smart-appliance... ‘information’ not ‘power’ 
sensor & actuator hardware 

Response precision/speed: Buildings: 3-8 min. (J. Mathieu, Gadgil, 
et al. 2010), Air Cond.: ∼ 1 min (Eto et al. 2009), instantaneous in 
theory ... A generator can take hours! 

22 / 35 



Representing DR 

DR and storage can do similar things 

Load-shifting, curtailment, regulation 

Should include DR in operations & planning, like storage 

Naive approach 
Model all loads. 

Millions of new variables & 
constraints 

Not ISO’s jurisdiction 

Our objective 
DR representation suitable for: 

Optimal power flow 

T & G planning 

Any optimization w/ power 
flow 
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Concisely representing DR 

Load 

data 

Load 

Low-order 
data model 

Aggregator 
System 
operator 

data 

Load 
Low-order model features 

Tractable (small, linear or 
convex) 

Generic (diversity of loads) 

Simple to implement 
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Generic approach: polytopes
 

Individual load model 

x(t): power use at time t = 1, ..., T 

Ax ≤ b: T -dimensional polytope 

Bounded ... finite power consumption 

Examples 

Power & ramp limits 
Deferrable loads w/ arrivals and 
departures 

Pmin ≤ x(t) ≤ Pmax T 
t=1 x(t) = E , x(t) ≥ 0 

Rmin ≤ x(t) − x(t − 1) ≤ Rmax x(t) = 0 for t /∈ {a, d} 

Also: Input/output/leakage losses, storage, TCLs, most non-quantized 
loads ... 
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The Minkowski sum 

Suppose I have many loads: 

Xi = {xi | Ai xi ≤ bi }, i = 1, ..., N. 

If N = 106 , TN new variables, lots of constraints ... too much info. 

Aggregate capabilities:  
P = p

     
 

N 

p = xi , xi ∈ Xi , i = 1, ..., N . 
i=1 

P is called the Minkowski sum of Xi , i = 1, ..., N. 

Left: the MS of two triangles. 

Dim(P) = T . 

Goal: A concise approximation 
of P. 
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Prior work 

A few existing approaches: 

Using PDEs, probability: Malhamé and Chong 1985, D. S. Callaway 
2009, Perfumo et al. 2012. 

As effective storage (a polytope): TCLs in J. L. Mathieu et al. 
2013; J. Mathieu, Kamgarpour, et al. 2015, Hao et al. 2013; EVs in 
Nayyar et al. 2013. 

Observed Minkowski sum structure: Hao et al. 2013, Alizadeh et al. 
2014 (plasticity). 

Our contribution 

Use Minkowski sum mechanistically 

Admits all convex, closed polytopes 

Relies only on LP, matrix algebra 
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Challenge: computational complexity
 

Polytopes (convex & closed) can be specified in 
two ways: 

Facets: Ax ≤ b (each row is a facet) 

Vertices: convex hull of points in RT 

Loads almost always modeled as facets. 

Typical Minkowski sum procedure: 

1 

2 

3 

Convert facets to vertices (vertex enumeration, NP-hard, Khachiyan 
et al. 2008) 

Minkowski sum in vertex representation (polynomial-time in # of 
vertices)
 

Convert vertices to facets (also hard)
 

No known efficient algorithm for Minkowski sum in facet representation. 
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Outer approximation of the Minkowski sum
 

Special case: same A matrices. 

X1 = {x | Ax ≤ b1}, X2 = {x | Ax ≤ b2}. 

Define: 
Q = {x | Ax ≤ b1 + b2} 

Proposition 

Q contains the Minkowski sum of X1 and X2. 

Proof: Suppose z is in the Minkowski sum of X1 and X2. Then there 
exist x1 ∈ X1 and x2 ∈ X2 such that z = x1 + x2. By construction, 
A(x1 + x2) ≤ b1 + b2 and therefore z ∈ Q, i.e., any element of the 
Minkowski sum is in Q. 

Can we generalize this? 
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Outer approximation: general case 

Now suppose             
X1 = x

Ac 

A1
x ≤ bc1 

b1
, X2 = x

Ac 

A2
x ≤ bc2 

b2
. 

Ac are common rows in the A matrices. Define ⎡ ⎤ 
Ac 

A = A1⎣ ⎦ 

A2 

We can choose b̂1 and b̂2 so that ⎧ ⎡ ⎤⎫ ⎧ ⎡ ⎤⎫ ⎨ bc1 ⎬ ⎨ bc2 ⎬ 
X1 = x Ax ≤ ⎣ b1 ⎦ , X2 = x Ax ≤ ⎣ b̂2 

⎦ . ⎩ ⎭ ⎩ ⎭
b̂1 b2 

General outer approximation: ⎧ ⎡ ⎤⎫ ⎨ bc1 + bc2 ⎬ 
P = z Az ≤ ⎣ b1 + b̂1 ⎦ . ⎩ ⎭

b̂2 + b2 
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Algorithm 

LP for the smallest b̂: 

Ac bc1b̂1 = max A2x s.t. x ≤ 
x A1 b1 

A2x = b̂1 

Procedure: 

1 Assemble all unique rows of the Ai , i = 1, ..., N, construct common 
A matrix. 

2 Use LP to find b̂i ’s, construct new bi vectors, i = 1, ..., N. 

3 Outer approximation is
 
z Az ≤ N 

i=1 bi
 
. 
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Theoretical results 

The outer approximation is exact for 

loads with only power constraints (hypercubes): 

pi,min(t) ≤ xi (t) ≤ pi,max(t) i = 1, ..., N, t = 1, ..., T ; 

deferrable loads (simplices): 

T 

xi (t) = Ei i = 1, ..., N. 
t=1 

Comparable to existing results for deferrable loads w/ arrivals & 
departures.3 

3A. Nayyar et al. “Aggregate flexibility of collections of loads”. In: 
Decision and Control (CDC), IEEE 52nd Annual Conference on. Invited. Dec. 
2013, pp. 5600–5607. doi: 10.1109/CDC.2013.6760772. 
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Empirical performance: loads with power & energy 
constraints 

Volume of Approximation 
Error = 

Volume of Exact Minkowski Sum 

2 3 4 5 6
1

1.002

1.004

1.006

1.008

1.01

Dimension

M
ea

n 
A

pp
ro

xi
m

at
io

n
E

rr
or

1% error

No error

Mean error over 1,000 random pairs for each number of dimensions (time 
horizon) 
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Outlook 

Summary 

Many loads are modeled by polytopes. 

Aggregate flexibility is the Minkowski sum ... computationally 
intractable. 

Our work: a generic, tractable, accurate outer approximation. 

Future work 

Outer approximation for loads defined SOCP & SDP chance 
constraints to accommodate uncertainty, e.g., arrival & departures, 
unknown model parameters. 

Can we define financial storage rights for general polytope or convex 
resources? Almost certainly ... 
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Questions? 

J.A. Taylor. “Financial storage rights”. In: Power Systems, IEEE 
Transactions on 30.2 (Mar. 2015), pp. 997–1005. doi: 
10.1109/TPWRS.2014.2339016 

S.F. Barot and J.A. Taylor. “A concise, approximate representation of a 
collection of loads described by polytopes”. In: Under review (2015) 

josh.taylor@utoronto.ca 
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